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Abstract : Automatic generation control(AGC) is one of the most critical issues in multi area power system control. AGC models 

encounters many problems like imbalance between generation and load demand, data exchanging, calculation complexities and 

memory requirements. To overcome such difficulties this paper presents a controller based on multi agent system (MAS). Change 

in communication topology, time delay , network induced effects are used to test the system performance. a controller design 

based on reinforcement learning and it has two individual agents namely controller agent and estimator agent. for the tuning of 

input parameter particle swarm optimization is used. Furthermore, controller design and control scheme are described. Mean 

square error of different states of the power system are analyzed in addition. The simulation results shows the capability of 

proposed controller for distributed automatic generation control in multi area power system. 

 

IndexTerms - Communication topology (CT), Automatic Generation Control (AGC), multi-agent reinforcement learning 

(MARL), smart grid (SG) 

 

I. INTRODUCTION 

Load frequency control is to make balance between power generation and demand in addition to losses. The losses occurring due to 

delay in communication network. In general networks suffering with data transmission, computing and storage problems .by 

making decentralization of system ,the performance could be improved compared to classical centralized system. Smart grids are 

becoming more reliable with these data communication systems. The power system mainly based on the algorithms for its 

operational and control techniques. Inter connected networks with their bi directional data flow  make communication mor effective 

and feasible and it ensures balancing of generation and demand. 

Significance of load frequency control monitoring is exponentially increasing. Multiple configurations of power system models 

with control strategies discussed in both centralized and distributed LFC system [1], importance of distributed LFC for efficient 

communication in interconnected system is addressed. Effect on stability with communication losses is explained in[2], LFC base d 

time delay estimation and packet loss with markovian technique is presented in [3], smart grid and its interaction effects on the 

information and communication technology in data centers is presented with reduction in maintenance cost energy efficient 

management in communication systems is also presented [4].A time varying communication topology matrix is used to observe the 

changes in smart grid with communication losses in[5], and a LFC strategy with distributed gain scheduling is proposed to reduce 

the losses due to change in communication model. Communication delay impact on the power system dynamic performance 

addressed for minimum deviation of frequency parameter is investigated in [6]. Network induced effects, time varying delays, 

packet losses and data disorder in wide area power system control is explained [7]. 

 

I. MODELING OF A POWER SYSTEM IN SMART GRID 

The basic objective of LFC in integrated power system area is to require the balancing between of total generation against total 

load demand, including system losses and maintain a tie line power at a scheduled value. The AGC via communication network 

in a SG is shown in Fig. 1.The power system dynamics is modeled as a continuous-time simulation while communication network 

as a discrete event due to its inherent nature. The information for frequency deviation of each area and tie-line power between two 

areas is transmitted via communication network through local/control center, to each area for respective control action. The state-

space modeling of thermal power system is presented.  

In LFC problem, our aim is to keep the frequency close to its nominal value by adjusting the balance between generation set point 

and load demand. The frequency deviation of each area is governed by              

∆𝑓𝑖̇ = −
1
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∆𝑓𝑖 +
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Where ∆𝑓𝑖̇ is the frequency deviation of individual area,∆𝑃𝑡𝑖 is the generator mechanical power deviation, ∆𝑃𝑡𝑖𝑒
𝑖  is the tie line 

power deviation of between two areas, ∆𝑃𝐷𝑖 is the load deviation of each unit, 1 
1

𝐾𝑝𝑖
= 𝐷𝑖  is the damping coefficient of each area, and 𝑇𝑝𝑖 

𝑇𝑝𝑖

𝐾𝑝𝑖
= 𝑀𝑖 is the equivalent inertia of each area. 
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The turbine dynamics is represented as 

∆𝑃𝑡𝑖
̇ = −

1

𝑇𝑝𝑖
∆𝑃𝑡𝑖 +

1

𝑇𝑡𝑖
∆𝑃𝑔𝑖                                    (2) 

Where 𝑇𝑡𝑖 is the turbine constant of each area and ∆𝑃𝑔𝑖  is the turbine valve position deviation of each area. 

The governor equation is given by 

∆𝑃𝑔𝑖
̇ = −

1

𝑅𝑖𝑇𝑔𝑖
∆𝑓𝑖 −

1

𝑇𝑔𝑖
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1

𝑇𝑔𝑖
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Where 𝑅𝑖 is the droop coefficient of individual area and ∆𝑃𝑟𝑖 is the load generation balance point. 

The net tie-line deviation between two different areas is represented as 

∆𝑃𝑡𝑖𝑒
𝑖 = ∑ 2𝜋𝑇𝑖𝑗(∆𝑓𝑖

𝑁
𝑗=1,𝑗≠𝑖 − ∆𝑓𝑗)                     (4) 

Where𝑇𝑖𝑗  is the synchronization coefficient, ∆𝑓𝑖 is the frequency deviation of area j, and N is the total number of interconnected 

areas. 

The state-space modeling of i th area is given by 

𝑥𝑖̇ = 𝐴𝑖𝑖𝑥𝑖 + 𝐵𝑖𝑖𝑢𝑖 ∑ 𝐴𝑖𝑗𝑥𝑗
𝑁
𝑗=1,𝑗≠𝑖 + 𝑇𝑖∆𝑃𝑑𝑖         (5) 

Where 𝑥𝑖 = [∆𝑓𝑖 ∆𝑃𝑡𝑖  ∆𝑃𝑔𝑖  ∆𝑃𝑡𝑖𝑒
𝑖𝑗]𝑇 , 𝑢𝑖 = ∆𝑃𝑟𝑖 
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 . 

 

In simulation study, the initial condition of frequency deviation for all the four areas is assumed as 0.5 Hz, while the initial 

conditions of other states as zero. Aii ,Bi ,ui , Ti , and ΔPdi  are system matrix, system input, control input matrix, disturbance, 

and load disturbance of i th area, respectively, whereas Aij represents the system matrix of interconnected areas. If 

communication infrastructure is completely reliable, the control inputs of controller can be given as 

𝑢𝑖 = −𝐾𝑖𝑥𝑖 − ∑ 𝐾𝑖𝑗𝑥𝑖𝑗
𝑁
𝑗=1,𝑗≠𝑖  , 𝑖 ∈ {1 … .𝑁}                   (6) 

where Ki ,Kij are the controller gains obtained from the PSO algorithm. So, communication matrix can be defined as 

𝐶(𝑡) = [𝐶𝑖𝑗  (𝑡)]𝑁×𝑁  .     (7) 

Next, diagonal elements of C(t) will always be 1, indicating communication channel for diagonal elements is always ON. 

Furthermore, the power system dynamics including CT is given as 

𝑥𝑖̇ = 𝐴𝑖𝑖𝑥𝑖 + 𝐵𝑖𝑖𝑢𝑖 ∑ 𝑐𝑖𝑗𝐴𝑖𝑗𝑥𝑗
𝑁
𝑗=1,𝑗≠𝑖 + 𝑇𝑖∆𝑃𝑑𝑖                (8) 

𝑢𝑖 = −𝐾𝑖𝑥𝑖 − ∑ 𝑐𝑖𝑗𝐾𝑖𝑗𝑥𝑖𝑗
𝑁
𝑗=1,𝑗≠𝑖  , 𝑖 ∈ {1… .𝑁}.            (9) 

Putting the value of 𝑢𝑖 in (8), the closed-loop dynamics of the system can be represented as 

𝑥𝑖̇ = 𝐴̂𝑖𝑖𝑥𝑖 + 𝐵𝑖𝑖𝑢𝑖 ∑ 𝑐𝑖𝑗𝐴̂𝑖𝑗𝑥𝑗
𝑁
𝑗=1,𝑗≠𝑖 + 𝑇𝑖∆𝑃𝑑𝑖   .            (10) 

Often, communication structure modeling refers to the reconstruction of state and/or output specific paths, but if the structure to 

be modeled is subject to large uncertainties, it is better to include several topologies of structure rather than the exact path. 

Mainly, these topologies are based on a multimodal representation of the structure, because of the large degree of uncertainty in 

the establishment of communication link. The one possible illustration of CT of power system is shown in Fig. 2(a).  

 

 
Fig. 1. Framework structure of a multi-area power system having communication network 
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(a) 

 
(b) 

 

Fig. 2. CTs between the agents (four areas). (a) Illustration of possible CT for multi-area power system. 

 (b) One sample CT modes using a Markov process. 

 

III. IMPLEMENTATION OF MARL TECHNIQUE 

In this section, an MARL technique is implemented for a multi-area power system with communication network. The complex 

hybrid behaviors are caused due to frequent switching between different modes of CTs as the logic relation operation and 

operating modes of interconnected area. Therefore, interactive hybrid control strategies should be designed to effectively control 

the complex hybrid behaviors. The modeling of a multi-area power system with MAS is given in Fig. 3(a). From Fig. 3(a), it is 

clear that that MAS agent will data of multi-area power system through communication network and then send it to estimator 

agents. Next, estimator agents will estimate the available signal and provide average ACE signal to controller.  

  
(a) 

 
(b) 

 
(c) 

 

Fig. 3. Architecture for the proposed multi-area power system with communication infrastructure. (a) Flowchart of modeling of a 

multi-areapower system with MAS. (b) Proposed multi-agent model for ith area ofa thermal power system. (c) Q-learning 

algorithm structure 
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1. Multi-agent Reinforcement Learning 

The main objective of an MARL technique is how to maximize the reward signal by taking some action in a particular situation. 

The main task of the MARL technique is to solve a problem by interacting with a system. Learner is called an agent and system 

that interacts with it is known as environment. Furthermore, agent will interact with environment and take the action at from the 

set of action at a time t s and brings the system state st to new system state st + 1. So, agent is provided with the corresponding 

reward signal rt + 1. This interaction process between agent and environment is repeated until the desired aim is achieved. In this 

study, a Markov decision process (MDP) is used that will contain all relevant information of state signal enabling to predict the 

next system state using some action with expected reward signal. Furthermore, in MDP, the aim is to maximize the sum of 

returned reward over time, and expected sum of discounted reward is presented by 

𝑅 = ∑ 𝜆𝑘𝑟𝑡+𝑘+1
∞
𝑘=0                                                   (11) 

where λ is a discount factor lies between 0 < λ < 1, which provides the maximum preference to recent rewards. The value 

function of each state is expressed as the expected reward when starting at system state st having following policy Ω(s, a): 

𝑉Ω(𝑠) = 𝐸Ω{∑ 𝜆𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 |𝑠𝑡=𝑠} .                    (12) 

The optimal policy of value function can be given as 

𝑉∗(𝑠) = 𝑚𝑎𝑥𝑉Ω(𝑠)  ∀𝑠∈ 𝑆.                                    (13) 

Further action value is found using 

𝑄Ω(𝑠, 𝑎) = 𝐸Ω{∑ 𝜆𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎  . }  (14) 

To find the optimal action value, Bellman’s equation is used and given as 

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥𝐸Ω{∑ 𝑟𝑡+1𝜆𝑚𝑎𝑥∞
𝑘=0 𝑄∗(𝑠𝑡+1 ,𝑎

′)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎  }.  (15) 

Next, a temporal difference method is used which learns the model of system under control. The only information available is the 

expected reward for each action taken for transition of state St to new state St + 1. This algorithm, called Q-learning, will 

approximate the Q-value function. The structure of Q-learning algorithm is given in Fig. 3(c). The detail of learning process of 

controller is shown in Fig. 3(d). In next section, proposed control formulation is presented. 

 

2. Proposed Control Formulation 

A) Controller Agent: Conventional PI control in LFC problem may be replaced by intelligent controller for improvement in 

frequency deviation. In this regard, the design of LFC problem operates in discrete mode and performance of system is more 

flexible. Furthermore, at every time step (k = 1, 2, 3......), the controller agent observe the current state of system sk and take an 

action ak in order to bring the new state of system. It is already described in above section (see Fig. 3(b)) that ACE and ΔPD 

signals are available as state vector for every LFC execution period and used as input to the controller agent. It is assumed that all 

possible states are finite. Here, a PSO algorithm is used to compute discretized state vector value. In this paper, an RL algorithm 

is used to estimate the Q*- value function and optimal policy. 

 

Let us take a sequence of sample or training set (sk , sk + 1, ak , r), where (k = 1, 2, 3......) is LFC execution period. For each 

sample, transition of state sk to new state sk + 1 requires some action ak , where rk = f(sk , sk + 1, ak ) is called a consequent 

reinforcement. For estimating of Q*-value function, above sequence is used in simulation. Let us assume that for kth iteration, Qk 

is the estimate of Q*. So Qk + 1 can be obtained as follows: 

𝑄𝑘+1(𝑠𝑘 , 𝛼𝑘) = 𝑄𝑘(𝑠𝑘 , 𝛼𝑘) + 𝛼[𝑔(𝑠𝑘, 𝑠𝑘+1,𝛼𝑘)+𝛼∈𝐴
𝜆𝑚𝑎𝑥𝑄𝑘(𝑠𝑘+1, 𝛼

∗) − 𝑄𝑘(𝑠𝑘 , 𝛼𝑘)]    (16) 

where 0 < α < 1 is constant referred as step size of the learning algorithm. In this algorithm, exploration probability for selection 

action for different state is used. Each state action is selected on the probability distribution over action space. Furthermore, Q-

value is used as an objective function for the PSO algorithm. The Q-value of each particle insures the performance of particle for 

controlling the system. The learning of controller proceeds to a new generation until a predefine stop criteria is achieved. The 

parameters of PSO include population size = 100, maximum generation = 100, cognitive coefficient (C1 = C2 = 1.2), and inertia 

weight (W = 0.3). The simulated results using PSO of area-1 for four-area power system is shown in Fig. 4(a). 

 
(a) 

 
(b) 

Fig. 4. Fitness value versus generation and estimation of β value: 

(a) Fitness value versus generation for PSO algorithm of area-1. 
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(b) Estimation of β value with calculated over 50 s. 

B) Estimator Agent: The ACE of system can be represented as a linear combination of tie-line power and frequency deviation of 

each area given by 

𝐴𝐶𝐸𝑡(𝑡) = 𝐵𝑡∆𝑓𝑡(𝑡) + ∆𝑃𝑡𝑖𝑒(𝑖,𝑗)).        (17) 

 

To determine the ACE, it is obvious to know the frequency bias coefficient (β). Conventionally, the value of β is usually 

considered as −10B, i.e., a constant value. Thus, the ACE signal will only react to internal disturbance, not to the external 

disturbance. Furthermore, to improve the dynamic performance of the system, the estimator agent will estimate the β parameters 

and determine the ACE signal accordingly. It is clear that for each LFC execution period, estimator agent will receive ΔPtiei-j ,Δfi , 

ΔPti , and ΔPDi signals as inputs, then determine the β parameter, the ACE signal, and feed to the controller [see Fig. 3(b)]. The 

power balance of system (p.u.). for ith area can be represented a 

∑ ∆𝑃𝑡𝑗𝑖(𝑡) − ∆𝑃𝐷𝑖(𝑡) − ∆𝑃𝑡𝑖𝑒𝑖−𝑗
(𝑡) =

𝑇𝑝𝑖

𝐾𝑝𝑖
∆𝑓𝑖(𝑡) +

1

𝐾𝑝𝑖
∆𝑓𝑖(𝑡).

𝑛
𝑗=1          (18) 

By using (17) and (18), we can obtain 

∑ ∆𝑃𝑡𝑗𝑖(𝑡) − ∆𝑃𝐷𝑖(𝑡) + 𝛽𝑖∆𝑓𝑖(𝑡) − 𝐴𝐶𝐸𝑖(𝑡) =
𝑇𝑝𝑖

𝐾𝑝𝑖
∆𝑓𝑖(𝑡) +

1

𝐾𝑝𝑖
∆𝑓𝑖(𝑡).

𝑛
𝑗=1      (19) 

From (19), we can find the ACE signal. Using the ACE signal and other variables, the β value can be estimated for corresponding 

execution period. Since the value of β vary according to system condition, so these system parameters have to be updated 

regularly using a recursive least square algorithm. Fig. 4(b) shows the estimated and calculated value of β over 50 s of area-1. As 

depicted, for this simulation, the βcal is set to −10 B of the target control area. The parameter βest converges rapidly to the βcal . 

 

IV. RESULTS AND DISCUSSION 

    In this section, a four-area power system (see Fig. 1) coupled via communication network as SG is simulated with an intelligent 

controller. Due to packet loss, induced network delay, the CT of SG changes, and, hence, the dynamic performance of the power 

system degrades. With CT changes, the MSE of system states are computed to evaluate the dynamic performance of the system. 

The system parameter of the four-area power system in this study is considered from [5]. 

 

 MSE of Power System States 

In this section, the MSE of power system states are computed. In order to validate the system dynamic performance and stability 

over the communication network, MSE of power system states can be computed 

xi = [Δfi ΔPti ΔPgi ΔPtie ij ] 

MSE(k) = {(x(k) − x0 (k))T (x(k) − x0 (k))} 

where x0 (k) is the nominal state of the power system at kth time, and x(k) is the system state when a communication 

infrastructure is used. The sampling period is considered as 0.01 s. The initial value of frequency deviation for studied system is 

considered as 0.5 Hz. The perfect CT (case A) (see Fig. 2(a)) is selected in analysis as a reference while computing the MSE of 

state vector for other areas. Furthermore, the impact of CT changes on the dynamic performance of the four-area power system 

using MAS technique is analyzed and compared with suboptimal control designed. It is clear that CT mode is highly random as 

time progresses. The MSE of state variables for five imperfect CT with respect to perfect CT for area-1 is illustrated in Fig. 

7(a).Furthermore, the MSE of state variables of other area with respect to perfect CT for area-2 to area-4 is illustrated in Fig. 7(b) 

to (d).  

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Fig. 7. Dynamic response of states and all areas MSE with MAS technique. 

(a) suboptimal control design by [12]. (b) Dynamic performance of area-2. 

(c) Dynamic performance of area-3. (d) Dynamic performance of area-4. 

(e) Dynamic performances of all area. 

 

The accuracy of these states seeks importance in providing information to AGC control center, on how the others areas 

communicate to its neighboring areas using an MAS technique. The comparative variations of MSE for state xi all the four areas 

are shown in Fig. 7(b). It may be ascertained that system parameters and bias coefficient have influence on the computation of 

MSE values. 
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